
Architecture Review
Independent Evaluation of Architecture, Maintainability and
Structural Risks

An anonymized excerpt from a real architecture validation report.

Conducted by Nicolai Wolko - WBK Consulting AG - Heise Author -
Switzerland

Representative Example (2025)

 of 1 15

Table of Contents

Table of Contents 2

Executive Summary 3
Scope and Limitations 3

Overall Architecture Rating 3

Key Recommendations 4

Project Context 5
Application Scope and Business Overview 5

Key Metrics 5

Primary Objectives 5

Architecture Assessment 6
Layer Structure and Dependency Analysis 6

Maintainability and Code Quality Observations 7

Module Boundaries and Shared Libraries 8

Risk Evaluation 8
Technical Debt Classification 8

Dependency Cycles and Coupling Analysis 9

Test Coverage and Validation Maturity 10

Key Findings and Refactoring Recommendations 10
Separation of Concern Violations 11

Missing State Management 13

Very high coupling 14

 of 2 15

Project Context

Application Scope and Business Overview

Example Company, based in Switzerland, is a proptech company providing a
specialized SaaS solution.

Current development team stated the architectural design of the application is
broken and out of date. Time to production of feature tickets has increased
dramatically - quality of application is decreasing. There are bugs in productive,
which the developer team cannot address.

Goal of this review was to evaluate the architectural health, maintainability and
modular consistency of the codebase to provide actionable recommendations for
refactoring and governance.

Key Metrics

Primary Objectives

1. Determine how closely the current structure aligns with intended architectural
boundaries.

2. Identify design and implementation factors that negatively affect productivity
and long-term stability.

3. Quantify the scope of structural problems and provide an evidence-based
roadmap for refactoring.

Metric Value Comment

Lines of Code (LOC) ~ 85’000 Core + Frontend Modules + Shared Libraries

Angular Version 12 Out of date

Team Size 7 Developers Distributed, last initial developer quit 3
months ago

Primary Stack Angular, Typescript

Last Audit None No former architecture validation before

 of 5 15

Separation of Concern Violations

Observation

The reviewed Angular codebase shows extensive business logic within UI
components.

Several core workflows (validation, data transformation and orchestration between
services) are implemented directly in component classes rather than delegated to
dedicated services or domain layers.

A base class named ExampleProductPageComponent centralizes common logic
such as data loading, state tracking, and utility methods.

All major page components inherit from this class, resulting in:

 • Strong coupling between components and shared utilities
 • Implicit dependencies on internal component state
 • Deep inheritance hierarchies (up to 3 levels)
 • Component files exceeding 2 000 - 3 000 LOC

This pattern leads to tight coupling between UI and business logic, making
components difficult to test, extend, and refactor.

Refactoring effort increases non-linearly with feature growth, as logic is repeated or
overwritten in subclasses.

Root Cause

It appears likely that the initial development was conducted by a team with limited
architectural experience or insufficient familiarity with Angular’s design principles.
Foundational architectural decisions were made early without long-term
maintainability in mind. Over subsequent iterations, systematic refactoring and
technical debt reduction were neglected, resulting in accumulated structural
erosion.

This aspect is critical when evaluating whether the application should be refactored
or reimplemented.

If the underlying causes - missing architectural ownership and lack of clean design
principles - are not addressed in a potential rewrite, the new system is expected to
reproduce the same structural deficiencies within a short time frame.

This architectural drift has also reduced feature delivery speed and created
uncertainty in planning, as technical issues increasingly dominate sprint goals.

 of 11 15

